拼音 | dìng jī fēn | 注音 | ㄉㄧㄥˋ ㄐㄧ ㄈㄣ |
首字母 | djf | 词性 | 名词 |
近义词 | 不定积分、积分、定积分法、积分法 | ||
反义词 | 微分、微积分 | ||
基本解释 | 微积分的重要概念。德国数学家黎曼首先给予严格表述,故又称黎曼积分”。设函数f(x)在[a,b]上有界,把区间[a,b]任意分成n个小区间[x0,x1],[x1,x2],…[x﹏-1,x璶],各个小区间的长度为δx璱=x璱-x﹊-1(i=1,2,…,n)。在每个小区间上任取一点ξ璱作和s=σni=1f(ξ璱)δx璱,记λ=max{δx1,δx2,…,δx璶},若不论对[a,b]怎样分法,也不论在小区间[x﹊-1,x璱]上点ξ璱怎样取法,只要当λ→0时,和s总趋于确定的极限i,则称极限i为函数f(x)在区间[a,b]上的定积分,记作А要琤璦f(x)dx,其中f(x)称为被积函数,x称为积分变量,a、b分别称为积分下限和上限,[a,b]称为积分区间。 |
定积分是积分的一种,是函数f(x)在区间[a,b]上的积分和的极限。
这里应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值(曲边梯形的面积),而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式),其它一点关系都没有!
一个函数,可以存在不定积分,而不存在定积分;也可以存在定积分,而不存在不定积分。一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。